BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 51 (6), 1885—1886 (1978)

Location of the ν_1 , ν_2 , ν_3 , and ν_5 Fundamental Vibrations of Ethylene- d_4

Nobukimi Ohashi, Tetsuo Kyogoku, and Shin-ichi Matsuoka

Institute for Spectroscopic Study of Matter, Faculty of Science, Kanazawa University, Maruno-uchi, Kanazawa 920 (Received November 15, 1977)

Synopsis. The ^{Q}Q branch peaks of the v_1 , v_2 , and v_3 Raman active bands of ethylene- d_4 were located at v_1 = $2260.8\pm0.1~\mathrm{cm^{-1}}$, v_2 = $1518.3\pm0.1~\mathrm{cm^{-1}}$, and v_3 = $984.4\pm0.1~\mathrm{cm^{-1}}$, respectively. The band center of the v_5 band which does not have a ^{Q}Q branch was determined to be v_5 = $2315.6\pm0.3~\mathrm{cm^{-1}}$ from the analysis in the symmetric top approximation.

While many Raman data have been presented for ethylene- d_0 , $^{1-6}$) few Raman data have been published for ethylene- d_4 . Though its pure rotational Raman spectrum was studied by Dowling et al., 2) its vibrotational Raman spectra have not been studied. Only the liquid state vibrational frequencies of the Raman active bands have been measured, by Hemptinne et al. 7) As a preliminary to the vib-rotational Raman study of ethylene- d_4 , we report the v_1 , v_2 , v_3 , and v_5 fundamental frequencies, since these data are considered to be important in the force constant calculation of this molecule.

Experimental

The experimental setup consisted of a He-Cd laser operated at 441.570 nm, a gas cell, and an Echelle grating monochromator. The scattered Raman radiation from a multi-reflection cell⁸⁾ placed inside the laser cavity was analyzed by the Echelle grating monochromator and detected by a cooled photomultiplier operated in conjunction with photon counting equipment. Ethylene- d_4 gas obtained from Merck, Sharp, and Dohme was used at a pressure of about 400 Torr. Wavelength calibration was made by using as standards the lines from an iron-neon hollow cathode lamp. A slit width of 0.4 cm⁻¹ was used in the measurements of the v_1 ${}^{Q}Q$ and the v_2 ${}^{Q}Q$ branch peaks, and a

slit width of 0.8 cm^{-1} was used in the measurements of the v_3 Q branch peak and the v_5 band.

Results

The $^{\rm Q}{\rm Q}$ branch peaks of the totally symmetric bands of ethylene- d_4 gas were determined to be $v_1=2260.8\pm0.1$ cm⁻¹, $v_2=1518.3\pm0.1$ cm⁻¹, and $v_3=984.4\pm0.1$ cm⁻¹. The v_1 value is larger than that in liquid state by 10 cm⁻¹, but the v_2 and v_3 fundamental frequencies are nearly equal to those in liquid state, as obtained by Hemptinne et al.⁷ These circumstances are similar to those in ethylene- d_0 .⁹

As the rotational structure of the v_5 band was observed under low resolution (about 1.0 cm⁻¹), as shown in Fig. 1, this band was analyzed in the symmetric top approximation. In order to enable the K-assignment to be done exactly we made use of the simulated spectrum which was caculated using the calculation program for the asymmetric rotor. As the rotational constants in the $v_5=1$ state can not be obtained at the present stage, we calculated the spectrum with $A_0=A_5=2.425$ cm⁻¹, $B_0 = B_5 = 0.73630 \text{ cm}^{-1}$, and $C_0 = C_5 = 0.56355$ cm $^{-1}$, where the ground state constants for ethylene- d_4 were taken from the paper of Duncan et al. 10) In the symmetric top approximation the P,RQk branches form a series of lines at the origins of subbands, if $\bar{B}_0 - \bar{B}_5$ is negligibly small. From the least squares fit of the observed data we obtained the following quadratic equation for the subband origins:

$$v^{\text{sub}} = 2317.4 + 3.601K - 0.006K^2$$
.

This equation gives $v_5 = 2315.6 \pm 0.3$ cm⁻¹ for the band

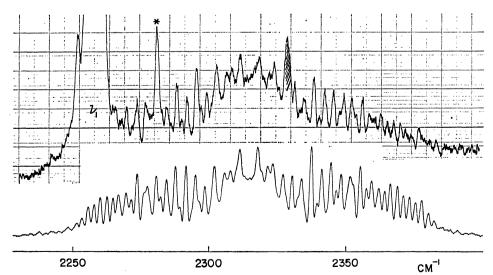


Fig. 1. Observed (top) and calculated (bottom) spectra of the ν_5 band of ethylene- d_4 . The peak marked by * was attributed to ν_1 (C₂HD₃) and the peak with shadow was overlapped by N₂ line.

center, which is also about $11~\rm cm^{-1}$ larger than that in liquid state. The negative value of the coefficient in K^2 is contradictory to $A_5 - \bar{B}_5 = 1.801 > A_0 - \bar{B}_0 = 1.775$. It was perhaps caused by the circumstance that the correction for the term $(\bar{B}_5 - \bar{B}_0)J(J+1)$ was not applied to the observed data and that the symmetric top approximation was used for an asymmetric top molecule.

References

- 1) J. Romanko, T. Feldman, E. J. Stransbury, and A. McKellar, Can. J. Phys., 32, 735 (1954).
- 2) J. M. Dowling and B. P. Stoicheff, Can. J. Phys., 37, 703 (1959).
 - 3) T. Feldman, J. Romanko, and H. L. Welsh, Can. J.

Phys., 34, 737 (1956).

- 4) L. Nemes and S. Suzuki, *J. Raman Spectrosc.*, 2, 193 (1974).
- 5) G. W. Hills and W. J. Jones, J. Chem. Soc., Faraday Trans. 2, 71, 812 (1975).
- 6) R. B. Foster, G. W. Hills, and W. J. Jones, *Mol. Phys.*, **33**, 1589 (1977).
- 7) M. de Hemptinne, J. Jungers, and J. M. Delfosse, J. Chem. Phys., 6, 319 (1938).
- 8) N. Ohashi, H. Watanabe, and S. Matsuoka, *Jpn. Appl. Phys.*, **12**, 1103 (1973).
- 9) G. Glocker and M. M. Renfrew, J. Chem. Phys., 6, 170 (1938); 6, 409 (1938).
- 10) J. L. Duncan, I. J. Wright, and D. Van Lerberghe, *J. Mol. Spectrosc.*, **42**, 463 (1972).